Experiences Porting NOAA Weather
Model FIM to Intel MIC

2012 NCAR workshop on heterogeneous multi-core platforms

Outline

* Porting methodology and validation
 MIC features and programming modes

e Status of FIM model on MIC

 Techniques to speed up FIM on MIC (OpenMP
and single-core)

* NO discussion of absolute performance on
MIC (non-disclosure agreement with Intel)

Why FIM instead of NIM?

* OpenMP threading is the best way to get good
performance on MIC

* FIM was already threaded with OpenMP

Porting Methodology

e Extract 1 time step from full model run on
CPU

— Save required IC info for each kernel

— Save end-of-timestep info for verification

e Extract model code for kernel of interest
— Build driver to read in IC info and pass to kernel

— Create subroutine to compare verification data to
kernel results

Porting Methodology (cont’d)

e Gather kernel timing info
— gptl_lite

 Modify kernel code (e.g. add directives) for
new hardware

* Run and compare results and timing

— Gather stats about max absolute and relative
differences

Validation

e Bit-for-bit is best, but roundoff differences are
likely

* How do you know you’re getting the right
answer?

— Perturb the initial conditions on “trusted”
hardware and compare results, or

— Use a different (but still trusted) compiler to
produce “trusted” differences

— Compare “trusted” diffs vs. “test” diffs

CPU performance comparison

cnuity perfornance

1 - 3 L I I I L \ T T T T T T T T
nehalen 2,8 GHz ——
N westnere 3.5 GHz —— A
1.2 sandybridge 2,6 GHz —#— T
interlagos_intel 2,2 GHz —&—
1.1 | interlagos_pgi 2.2 GHz " i .
e S
1r H -
o~ 8 - 9 I~ . %———_+’ -
”
3
< 8.8 H J
_% 8.7 ol
O . (___)
5 Yy e
[N e - 7 \
2 -
H #

1 2 3 4 5 6 7 8 9 16 11 12 13 14 15 16

Multi-core Workshop 7

Full dycore scaling on a node

Inverse run tine {1/s)

8,17
8.16
8.15
8.14
8.13
8,12
8.11

8.1
8.89
8.68
8,87
8.86
8.85
8.84
8.83
.82
8.61

FIH dynanics perfornance on SandyBridge

Multi-core Workshop

rulll-dgco rl‘ e 1 I T T T T T T T T T T T
"
L " 4
L s]
+—
I S 1
- —-'--’*/ s
AT
L
- /_/ -
.A'/*
- ,,-" —
A+
L e _
;”/
o
L J -
L _+/ J
yd
L e _
/ ’
/ I,]
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cores

16

MIC Features (Public)

Brand Name

Product Available

Physical Core Count

Logical Cores per Physical Core
Vector register size

10 Bus

Memory

Peak FLOPS

Programming

Intel® Xeon Phi™ coprocessor
(codenamed Knights Corner)

Shipping production 22nm in 2012
More than 50

4

512 bits

PCle

8 GB GDDR5

Greater than 1 TFLOP (DP)

Linux OS. IP addressable. Intel Developer
tools. Common source code with CPU

MIC programming modes

e Offload

— Host offloads part of calculation to coprocessor

— Compiler directives describe how to move data
* Native

— Everything runs on the coprocessor

— Use existing OpenMP directives

— NO code mods required to get it running

— Can use multiple cores via OpenMP and/or MPI

10

Offload Mode

MPI

Node 0

Node 1

Host Host

IN OouT IN ouT
PCle PCle

Coprocessor Coprocessor

Multi-core Workshop 11

Native Mode

MPI

Node 0

Host

PCle — PCle

Coprocessor Coprocessor

Multi-core Workshop 12

Current status of FIM on MIC

4 individual kernels from FIM dynamics
extracted, running, and validated in native mode

Full FIM dynamics also running as a standalone
kernel, running, and validated in native mode

1 kernel has been extracted, running and
validated in offload mode-thanks to help from
Intel

Getting FIM running in native mode required zero

L,”«,___mods to source code

13

Effect of mods to speedup cnuity
kernel on MIC

cnuity on HIC: effect of conpiler flags and code nods

precise_nofna ——
nofna —¢—
fast —%—

Firsttouch_scatter —5—

vector_scatter

Inverse run tine {1/s)

OHP _NUH_THRERDS

Multi-core Workshop 14

Vectorization speedup on SandyBridge
(X, Y axes differ from previous slide)

cnuity perfornance on SandyBridge: novector vs, vector

1.3 1 1 T T T T T T T T T T T T
novector ——
vector I
1.2 i v -]
1.1 v, o :
1+ _ ']
- /*,_-——-"*"'
~ 8.9 ..’ B
g 7 Ay
-~ 08,8 o o 1
2 ' 7~
= 8.7 -]
-) ¥
c e _
2 8.6 e §
o P
7 X A
c ' A
H 8.4 4
__.‘-'J$
8.3 ,ﬂ-"’/ i
8.2 / 1
8.1 ¥ 4
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cores

Multi-core Workshop 15

Vectorization example (orig)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.

do edg=1,nprox(ipn) <-- Compiler only considers inner loop for vectorization

anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do

anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea (ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
.. end do

v Multi-core Workshop 16

Vectorization example (fixed)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.
end do
do edg=1,nprox(ipn)
do k=1,nvl
anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do
end do
do k=1,nvl
anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea(ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
. end do

Multi-core Workshop 17

Notes on Vectorization

* Only inner loops vectorize

 MIC vector length exceeds even SandyBridge
* a**b does not vectorize

* Use —vec-report3

e “if” tests can cause problems

— “condition may protect exception”
— Fix with “IDIRS VECTOR ALWAYS”

18

How to make MIC code run well

* Vectorize
— 512 bit vector register

e Use lots of OpenMP threads
— Up to 4X the number of physical cores

* Memory affinity
— Add code to apply “first touch”
— Works best with “schedule(static)”

19

How to make MIC code run well
(cont’d)
* Minimize PCle transfers

 Minimize I/O issued from MIC

* Don’t use —fp-model precise

— ~2X performance hit using this flag with FIM on
MIC

20

Notes on OpenMP

* Experiment with SKMP_AFFINITY

I/

— “compact”, “scatter”, “balanced”

* Experiment with SOMP_SCHEDULE

— Only takes effect with when the attribute
“schedule(runtime)” is specified in threaded loops

— Default is “static”

— Some success with “guided”

21

Where Next?

* Multiple time steps
* Multiple KNC cards
* OpenMP in physics
* |/O

22

Summary

* OpenMP is the best way to get performance on
MIC

e Whether MIC or GPU, it matters which CPU
architecture is being compared to when assessing
speedup

e 2 methods to run code on MIC: “offload” and
“native”

* FIM benefits greatly from vectorization on MIC
- helps CPU also

23

